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This article presents one approach to the economical allocation of resources in
a complex logical system. The main goal is the understanding of systems that may
involve specialized digital hardware, a computer with software, and possibly a
specialized microcode within the computer processor. These components are
treated as uniformly characterizable options in the design of the system that will

ultimately be used.

I. Overview

In this article we present our approach to the economi-
cal allocation of resources in a complex logical system. A
computer is one example of such a system, but our main
goal will be the understanding of systems that may in-
volve specialized digital hardware, a computer with soft-
ware, and possibly specialized microcode for the extension
of the capabilities of the computer itself, It is our inten-
tion to consider these components as uniformly charac-
terizable options in the design of the system we will
ultimately use.

The system to be designed must be represented in some
unambiguous fashion in terms of a set of primitive opera-
tions. The logical n-input NAND gate is sufficient to
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build all systems, and in fact, is one of the alternate bases
for the complexity work of Savage (Ref. 1). However, to
provide a foothold for resource-allocation trade-offs, we
must represent our system with a cascade of higher-level
primitives, and evaluate the effect of implementing the
higher-level primitives with resources of varying cost and
performance. For concreteness of example, we will take
our highest-level primitives to be the arithmetic and
logical operators of a typical medium-scale computer, and
consider several purely computational tasks as our sys-
tem to be implemented.

Each primitive operator on the highest level must be
implemented in some low-level operator, with the lowest-
level logical operators being gates. Each can be con-
structed directly in the lowest level (built-in hardware) or
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constructed from some intermediate-level primitive (pro-
grammed from primitives of a lower level). For all its
apparent mystique, microprogramming is nothing more
nor less than the programming of the machine-language-
level primitive operators in terms of some lower-level set
of primitives. The microprogram memory is usually higher
speed than the main memory of the computer, and it is
frequently read-only. Our options thus include direct con-
struction of the primitive operators in hardware and pro-
grammed implementation in memory of various speeds
and costs. The relative benefit of each type of implemen-
tation for the various primitives depends strongly upon
how other primitives are implemented.

If the number of options being considered can be
restricted to a relatively small number, as would occur in
evaluating off-the-shelf options for a commercial com-
puter, then an ad hoc graphical comparison can be used
to evaluate them. Examples of this nature will be devel-
oped in a later section. For most real-life problems, the
number of options involved will be too large to handle
manually, so we expect at some future date to formulate
the allocation techniques we are developing into a form
suitable for solution by nonlinear mathematical program-
ming methods.

I1. Motivation

We can find motivation for our investigations in almost
all aspects of computer-oriented activities today. High
central processing unit (CPU) utilization is regarded as
the ideal in most general purpose computer installations,
and it is sought after by increasing memory to allow for
multiprogramming, requiring an expanded operating
system, and additional resources of other types, perhaps
including a faster CPU. Is this economically sensible?
To answer that, we need to know the true shape of the
performance vs cost curve for computer processors.
“Grosch’s Law,” which contends that performance is pro-
portional to the square of the cost, is approximately valid
for the IBM System/360 (Ref. 2, pg. 525), but thus may be
evidence of an IBM marketing strategy and not a tech-
nical phenomenon. Minicomputers appear to violate that
“law,” either because of real wiggles in the performance
vs complexity curves, or because they are more rapidly
making use of developments in component technology.
We should know which in order to plan intelligently for
the future.

High utilization alone does not make for efficient use

of resources. For almost any computer extant we could
synthesize a job or job-stream that would almost totally
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occupy the CPU time and available memory space and
yet very poorly utilize these resources. As an easy ex-
ample, perform error-correcting code analysis or decoding
on a processor with very high-speed (an expensive) float-
ing point arithmetic operators, and without effective bit-
manipulating operators. Here, a significant part of the
CPU is left idle, even though the CPU itself is not. This
same CPU-part will also be (mostly) idle whenever our
computer is doing text editing, program compilation or
assembly, and many other jobs that computers do.

TYMNET, the communications network of the TYME-
SHARE corporation, utilizes Varian 620i minicomputers
for message concentrators and terminal controllers (Ref. 3).
Data on the low-speed asynchronous communication lines
to terminals are sampled on a bit-by-bit basis, and packed
by software into characters (typically 8-bits). The hard-
ware needed to interface the computer to the communi-
cation circuitry is minimized this way, but the computer
moves many (18-bit) words about to enter each bit of
data. Was this the economical choice? Or could they have
more economically added character-assembly buffers to
the communications interface hardware? Well-formulated
questions such as this one can be answered directly in
terms of dollars.

In the Deep Space Stations, minicomputers perform
many tasks with responsibility shared with external
hardware. In handling down-link telemetry, for example,
computers do low-speed bit synchronization, control high-
speed bit synchronizers, control block decoders, and per-
form (via microprogram) sequential decoding. In each
case a choice must be made to partition between external
equipment and software. We wish to develop criteria to
guide that trade-off, and will describe some initial steps
toward that goal in this article.

Ill. System Representation and Optimization

The first step toward an optimizing solution of a prob-
lem is the complete and unambiguous description of that
problem. This is no less true in the allocation of compu-
tational resources. Most, if not all, of the computer-based
systems of greatest interest are finite state machines
(FSMs); or, more precisely, are collections of FSMs. Ex-
amples range from an Antenna Position Control Sub-
system to a communications switching computer, to the
operating system of a general purpose computer, to a
dedicated on-line reservation system. No programming
language in general use today admits a concise descrip-
tion of an FSM, although both high-level algebraic
languages and machine-assembly languages have been
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used to implement these systems. Direct FSM representa-
tion has long been used in the processing of languages
(Ref. 4), and has been recently applied to communica-
tions processing (Ref. 5). There is for now, however, no
clear standard language that could be used to describe

both hardware and software implementation of general
FSMs.

Suppose that a system under development has been de-
scribed as an FSM, and that steps toward its implementa-
tion are underway. In this process, the system would be
broken down into simpler, more primitive machines.
These second-level machines are themselves further seg-
mented, until a stage is reached where the direct imple-
mentation of the lowest-level machines in hardware, or
in any of the myriad of programming languages, is a
semitrivial exercise. In short, the system is subjected to a
top-down design (Ref. 6) — not in terms of a subroutine
hierarchy for an anticipated programmed implementation,
but in terms of an implementation-independent FSM
representation.

Given a complete description of the system as reduced
to this primitive level, it should be a straightforward task
to determine how total system performance depends upon
the performance of each of the lowest-level submachines.
And we can determine the performance and cost of each
of these lowest-level machines for each of the three likely
implementations: hardware, software executed from com-
puter main memory, and software executed from high-
speed memory (microcode). The implementation pattern
over all primitive submachines that yields lowest system
cost can be determined from these inputs by a straight-
forward but possibly long computational process. What
will happen in this process is that those primitive sub-
machines that most affect total system performance will
be implemented in the fastest, most expensive fashion,
and those primitives that little affect total performance
will be implemented in the slowest, cheapest fashion.

Once the implementation mode of the lowest-level ma-
chines has been determined, those machines on the next-
to-lowest level must be examined. Any of these for which
the constituent submachines are implemented in hard-
ware should probably also be implemented in hardware
or microcode, but this can be ascertained by the same
sort of computations that established the implementation
mode of the lowest-level submachines. This type of exam-
ination should be carried through all levels of the system
representation, assigning an implementation to each as it
progresses.
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The degree of optimality of the completed system de-
pends upon the way in which it is modularized, or broken
into its constituent submachines. Modularization is a
difficult and, even if well understood, not a well docu-
mented process (Refs. 6 and 7). From the designer’s
viewpoint, the best criterion appears to be understand-
ability. This may or may not be a good criterion from the
standpoint of system performance, but we expect that
performance is not critically dependent upon the specific
modularization selected. A poor modularization will at
worst prevent the suboptimized restricted problem from
closely approaching the true optimum. However, refusal
to modularize the system will present the optimizer with
a massive, unmanageable problem.

The process we have just described is similar to the
tuning process that is frequently applied to working soft-
ware modules. In tuning software, the software module is
instrumented to determine where it spends the majority
of its time, and that region subjected to an intense optimi-
zation effort. Tuning has been defended on the basis that
it is difficult to know before software is implemented
where the most critical areas are. We believe that those
critical areas will be quite obvious during the course of
design using an implementation-independent representa-
tion, and that the additional flexibility that exists before
implementation will yield a much superior result from
the attempted optimization.

Virtual memory systems (Ref. 8) and systems using a
high-speed buffer or cache (Ref. 9) attempt to perform
automatically an optimization process similar to what we
have described. In each, the main memory is a relatively
slow, relatively inexpensive memory. Data are moved
from main memory to the expensive high-performance
memory in blocks, so that most accesses to memory can
be satisfied by accesses to the fast unit, only rarely requir-
ing that data be moved between levels of memory. In
theory, at least, the more critical parts of the software
reside permanently in the fast memory, while the re-
mainder is only transiently in the fast memory, and hence
executes more slowly due to the time required to access
it in main memory.

We do not have a well-defined FSM representation
technique, so for a concrete example of the evaluation
and trade-off methods just discussed, we turn in the next
section to an area where we have a complete representa-
tion — working software modules — and evaluate imple-
mentation alternatives for the “primitive submachines”
represented by the machine instructions.

>

JPL TECHNICAL REPORT 32-1526, VOL. XIHl



IV. Computer Processor Evaluation/Design

A method of computer performance evaluation known
as the “instruction mix” method (Ref. 10) compares com-
puter processors on the basis of the execution times for
the instructions that are used most heavily in the jobs
that the computer is to perform. This is not a widely
accepted method because it ignores all of the subtleties
of input/output queuing, memory usage, and all features
of the vendor-supplied software that interface the typical
user to his machine. These objections can mostly be
waived if the job to be done is in process control where
the computers are small and their operating system
minimal or nonexistent. The user’s problem-solving ma-
chine is then built almost directly from the machine
instructions.

The user’s system must in any case be built from the
base computer’s instruction set, whether it is built directly
overall, or partially indirectly via instructions interpreted
by an operating system. The computer instructions form
the lowest-level primitive operator that is readily visible.
We can determine the relative importance of the various
instructions with respect to any specific task by tracing
the execution of working software that performs this task.
A companion article by Klimasauskas describes the inter-
pretive tracing program that we used to gather data
(Ref. 11). The program runs on the Xerox Sigma 5, so all
data are specifically relevant to that computer and its
software.

Execution data have been gathered on the instruction
usage of three different types of software: the FORTRAN
IV compiler, the on-line text EDITor, and user programs
written in FORTRAN. The FORTRAN IV compiler was
probed initially to determine how sensitive its instruction
usage was to the statement types being compiled. Sensi-
tivity was found to be very small — a few percent —
which meant that we could realistically identify the
instruction usage of a “typical” compilation, Figure 1 is a
bar graph of the selected “typical ’compilation data. Each
column of Fig. 1 corresponds to one of the Sigma instruc-
tions, and the mnemonic (Ref. 12) for the associated
instruction is written vertically beneath the column.
Height of the column of asterisks is proportional to the
percentage usage of that instruction on a logarithmic
scale. The character “=" on the bottom line designates
unused instructions, and “#” designates usage below 19.
By way of example, load immediate (LI) is the first in-
struction on the graph, and it accounts for about 2.4% of
the total instruction executions.
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EDIT proved to be a less stable subject, perhaps due
to the greater diversity of services provided to the user.
The “typical” instruction usage depends upon the user
statistics, which we have neither the facility nor the real
need to measure. Our need for exemplary material is
satisfied by considering the extremes of EDIT instruction
usage that are shown in Fig. 2a and 2b.

A set of user-written programs could obviously show a
great variability, To avoid either a massive statistics-
gathering project or extensive arguments relative to what
constitutes a typical user job or mix of jobs, we arbitrarily
selected matrix inversion as being one identifiable user
task that occurs frequently enough to be worthy of investi-
gation. We traced the inversion of matrices of varying
dimensions from 2 X 2 to 100 X 100. The dependence of
the total floating-point instruction usage relative to total
instructions is shown in Fig. 3. The detailed instruction
usage summary graph appears as Fig. 4 for the inversion
of the largest matrix.

It is a relatively easy matter to go from the statistics of
the sort shown in Figs. 1 to 4, plus published execution
times of the Sigma 5 instructions (Ref. 12) to an effec-
tive execution time for that computer relative to the task
to which the statistics apply. This effective execution time
is proportional to the cost of performing that particular
task on that computer. We can evaluate processor options,
such as floating-point hardware vs software floating-
point simulators, using this cost-indicator. With slightly
more effort we can determine an effective execution time
for other processors by first determining what instructions
or sequences of instructions on the processor being con-
sidered perform the same functions for the program as
each of the Sigma instructions used. The individual in-
struction execution times so devised then determine the
effective execution time for the processor. This process
has been carried out for the Digital Equipment Corpora-
tion PDP-11, and on several IBM processors. The result
of this is shown in Table 1.

The processor itself is only one of the cost-contributing
elements of a computer. Both main memory and input/
output equipment usually cost far more than the CPU.
The performance of the CPU, however, determines how
much time the entire system is occupied by a specific
task, except when that task is I/O-bound, or executing
at a rate constrained by one or more pieces of external
equipment. We shall assume in the following that the
tasks of interest are not I/O-bound, and in fact, that cost
involved in the external equipment is not of interest.
Memory cost is of interest, and since we do not have a
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good characterization for memory requirements, memory
size is treated as a free parameter. OQur specific compari-
sons will be between the PDP-11/20 and the Sigma 5
with various processor options. We will assume a fixed
cost, say 1 unit per 8 X 10? bytes, for the main memory
of these computers, and normalize all other item costs to
this figure. (We believe that the difference in memory
prices established by the manufacturers is an indicator of
overall technological advance during the period between
the design of the computers.) If we assume that the rela-
tive costs of CPU and memory depends predominantly on
CPU architecture and complexity, and little upon the
technology-base for construction and the manufacturer’s
marketing strategy, then normalization to a nominal
memory cost allows direct cost-wise comparison of the
CPU complexities. The relative cost figures for the com-
ponents of each of the computers have been derived from
the manufacturers advertised prices, and are only approxi-
mate. The modifications to our work to perform true cost
evaluation of various computers from quoted prices and
to include peripheral equipment costs would be routine.

We assume that the computers of interest will be uni-
programmed. Multiprogramming has no advantage unless
at least some of the tasks to be performed are I/0-bound,
and for this article at least, we wish to avoid the queuing
intricacies that arise there. For each task, the computer is
totally occupied by it from start to finish. The cost of
performing that task is simply the cost of the computer
configuration, times the execution time of the task, di-
vided by the total lifetime of the equipment. Lifetime is
assumed to be the same for all equipment. Since we are
comparing units rather than estimating exact costs, we
can normalize execution times by the execution time of
one of the configurations. The effective execution time
for the task and processor is then used for the time the
task occupies the processor. Since the configuration cost
is a straight-line function of the memory size allocated,
the task execution cost is also a straight-line function of
memory size. Table 2 lists the configurations considered,
together with the relevant cost parameters. Figure 5
shows the relative costs of executing the matrix inversion
task for these configurations, and Fig. 6 shows the rela-
tive cost of executing the FORTRAN compiler. Minimum
cost for all configurations occurs at zero memory, but
this is illusory because no work could be accomplished
without some minimum memory allocated. For large
memory sizes, the cost of the processor is significantly
below that of the memory. Hence, more complex proces-
sors with faster execution times become increasingly
economical with increasing memory size.
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V. A Computer Design Exercise

It is a conceptually easy step to go from evaluation
of computer processors to investigating the design of one.
In designing a computer, we must be aware that it is not
the computer per se that we are interested in, but it is in
fact the economical implementation and operation of the
users machine that is to be built using the computer and
possibly other components. Let us suppose that the ma-
chine under design is to perform a known specific task
and that we have reduced that task to an intermediate-
level machine representation called the Sigma Instruction
Set. In this form, the remaining system design is equiva-
lent to the design of a Sigma-like computer that has been
optimized for the specific task at hand.

There are many options available in this design. As one
extreme, we could build a separate hard-wired machine
to perform the operations of each of the Sigma instruc-
tions. As the other extreme we could build a very simple
machine and make it interpret the Sigma instructions. 1f
the simple machine program (the control program) were
stored in a fast read-only memory, this would be a typical
microprogramming situation. The control program could
be stored in read-only memory, or in read-write memory
of varying speeds and costs. In this environment, optimi-
zation consists of determining which parts of the control
program belong in which type of memory.

A wide range of intermediate configurations is possible.
A machine might be able to directly execute a basic sub-
set of the Sigma instructions, but trap to an interpreting
control program for the more complex instructions. The
obvious basic subset would include a L.Oad, STore, Shift-
by-one, and the ADD, SUBtract, logical AND, logical OR,
and logical Exclusive OR available in a single medium-
scale integration (MSI) logical array. This base machine
could have the indexing and indirect addressing opera-
tions of the Sigma, but it need not as these could be
made available in the same fashion as the more complex
instructions. The set of primitive operators of the system
has in this case been implemented in so simple a fashion
that we believe little or no manipulation of its cost and
performance is possible. Optimization is to be performed
by varying the memory type to which each segment of
the control program is to be allocated. But we also have
the option of implementing some of the other instructions
directly in hardware, or adding non-Sigma instructions
that would make interpretation of the more complex
Sigma instructions easier and faster.
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We can write the control program to interpret the com-
plex Sigma instructions without knowing what type of
memory it will be executed from. The control program
does depend upon instructions that are added to the base
machine, but mostly these represent replacement of parts
of the control program by hardware features. The great-
est effort is thus involved with developing the Sigma
instructions from the basic machine. In today’s market,
there are essentially three memory technologies that
could readily be considered: core (~ 1 us), MOS semi-
conductor (0.5 us), and Bipolar semiconductor (0.1 to
0.3 us). The cost of these on a per-bit basis is monotone-
increasing with speed. In implementing 100 instructions,
we have 31 options out of which to select the optimum.
We would not wish to compute through this space many
times because of iterations in the base machine struc-
ture, nor would we be able to compute through it even
once without some sensitive heuristic to reduce its effec-
tive dimensionality.

Let us label the instruction set as {I }» o and denote as
7=

p; the usage probability for instruction I; within some
user’s task of interest. The program to implement I; se-
quences through s; steps in the control memory. This
parameter s; depends only upon the operation performed
by I;, and not upon the implementation chosen. Let the
control memory segment for I; be implemented from com-
ponents with step-time ¢;, where #; in the above para-
graph can have any one of three values. The cost-per-step
is known to be a function of t;; call it ¢(t;). The total cost
of the submachine that implements instruction I; is thus
si * ¢(t;). The net execution time for I; is max {1, s; * ¢;},
where the 1 represents the time necessary to fetch an I,
from the computer’s main memory.

For convenience, we will let both the step-time and the
per-unit cost of the main memory be unity, and normalize
other items appropriately. Let B be the normalized cost
of the base machine, and M, be the number of units (and
cost) of the main memory assigned to the end user. Then
the total cost of our processor is

B + Z\'I,, + E Si ‘C(t;)

i=1

The effective execution time is

2 Ppi *max {S,' *ti, 1}

1

n
b
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The net normalized cost of a job is proportional to the
product of these two

Ceff =<§ pi cmax {S‘g * L, 1}> <B + Z\I” + E S 'C(ti>>
(D

The memory allocation, that is, the choice of ¢;, which
minimizes C,s is the sought-for optimum. The allocation,
of course, depends on the assumed cost function c.

At this point, let us approximate our real problem with
an ecasily solvable one. Assume first that the unity mini-
mum on the execution time of I; can be ignored. This
means either that the instructions are all longer than that
minimum, or that we have interposed a cache or buffer
memory between main memory and CPU. Assume second
that there is a continuum of memory speeds available,
instead of the above three, and approximate the cost func-
tion by ¢(t) = t# for some power 8. (This is not unlike
current pricing with 8 =~ 1.5.) By optimizing in this
fashion, we risk finding a t; either above or below the
accessible range; both extremes suggest that reorganiza-
tion of the base machine is necessary. Differentiating
C.;r with respect to each of the t;’s produces

0
?t— Ce/f = 0, SO
pisiti  _ 8 Sft;B @
é pisit; B+M,+3 Sit;ﬁ
i1 i=1

We can derive several conclusions by manipulating
Eq. (2). By summing over §, we see that the optimum
occurs when

n

Sstf = (B+M,) (3)

1
g—1
which means that the total machine control cost is pro-
portional to total costs of base machine and main memory.

If Eq. (3) is inserted into Eq. (2), we see that the optimum
occurs when

sth
npisiti _ "7 ! (4)
> pisiti Ssthp
i=1 i=1
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or in words: when the fraction of total time spent in I; is
equal to the fraction of total instruction-building costs
expended on I;. We can in fact reduce Eqs. (3) and (4)
to show that

n P B/B+1\ 1/8
— 1 8 L
a0y s ()

b= B+ M, ®)

Establishing allocations from Eq. (5) is far easier than
numerically minimizing Eq. (1), but we must still inter-
pret these results in terms of the real-world problem. If
any of the t; are significantly outside of the range covered
by current technology, we should revise the overall de-
sign by adding or deleting instructions from the base
machine, then recheck the allocation of control memory.
It may also happen that the overall performance of the
resultant machine is inadequate to fulfill some external
requirement, or is too fast and is always waiting for some-
thing to do. We can accommodate these factors within
Eq. (5) by pretending that M, is larger or smaller than
anticipated. We should also, at this point, return to the
basic design and question whether M,, was properly esti-
mated in the first place, since the selected figure pro-
duced unrealistic results when applied to the processor
design. Once all t; are within the technically feasible
range, they can be approximated by the nearest available
step-time, and the result used as a starting value for the
numerical minimization of Eq. (1).

The initial steps of this process have been performed
for a fully microprogrammed implementation of the
Sigma instructions used by the FORTRAN compiler. The
base machine was assumed to have logic for segmenting
the Sigma instructions into their constituent fields, basic
arithmetic/logical instructions, plus a shift by 2® instruc-
tion class, and test/add/shift combination instructions
for facilitating multiplies and divides. Figure 7 shows
the pertinent parameters that result from the applica-
tion of Eq. (5) to this task. Most of the control-program
memory times were close together and within the feasible
range. However, the multiply and divide operations had
relatively long memory times, indicating that, for this job
at least, they were constrained more by memory cost than
execution time. Most likely, the combination instructions
added to speed up the multiply/divide operations should
be deleted from the base machine, and replaced by a
conditional jump, which saves storage at the expense of
time. Neither this iteration, nor the next step of assigning
allowed memory times to the instruction control memory
have yet been performed.
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VI. Where We Are Now

It should be clear at this point that we could continue
almost forever with design examples of processor and
memory structures. The design exercise initiated in
Section V could of itself consume several months of
effort. We are not at the moment prepared to expend
that effort on that particular example.

The viewpoint we have developed for the efficiency
characterization of computer processors is a slight refine-
ment of the instruction-mix method (Ref. 10) for com-
puter performance evaluation. It is a useful tool for the
evaluation of computer processor options, and a tractable
measuring device for an end-use-oriented optimization of
processor design.

Although the work presented here has been specifically
processor oriented, the general results obtained have
turned out to be functions of the memory allocated to the
user’s process: the optimized processor cost is proportional
to the user’s memory cost. Thus, a way is needed to char-
acterize the memory required in the performance of user
tasks. Given that characterization, we should be able to
optimize operations with the user’s memory in much the
same way as we have attempted here for the control
memory.

We are also as yet unable to say anything about
economy-of-scale in computer systems. Again, we need a
characterization of memory requirements, and possibly
other parameters to permit us to estimate the overall per-
formance vs overall cost relationship. In addition, we may
need to investigate the behavior of 1/O boundedness;
queuing; and multiprogramming as they relate to the syn-
chronization of real-time events, such as those that exist
within a DSN tracking station, with computational events
within a controlling computer.

Finally, we believe that future progress along the path
initiated here depends upon the development of a system
description technique, such as the Finite State Machine
representation discussed in Section II, that will allow a
significant portion of the system design process to be
performed without prior commitment to hardware, firm-
ware, or software for implementation. Both computer
assembly languages and current high-level algebraic
languages correspond to implementation languages, rather
than description languages, when applied to systems in-
stead of to calculation problems.
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Table 1. Computer configuration speed comparison

FORTRAN )
\ s Matrix
Computer item compiling | h
. inverse time
time
Sigma 5 with floating hardware 1.0 1.0
Basic Sigma 5 CPU 1.0 9.7
Basic PDP-11/20 CPU 2.7 16.0
PDP-11/20 with floating hardware 2.7 2.9
IBM 360/44 2.0 1.7
370/135 1.6 1.7
360/65 0.66 0.54
370/155 0.40 0.34
360/85 0.15 0.09

Table 2. Computer configuration cost comparison

Computer item

Normalized cost

8 X 1073 bytes of storage

Basic PDP-11/20 CPU

PDP-11/20 with floating-point hardware
Basic Sigma 5 CPU

Sigma 5 with floating-point hardware

1.0
1.6
4.3
7.8
10.5
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Fig. 1. Instruction usage of typical compilation
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Fig. 2. Instruction usage of extremes of EDIT operation
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FLOATING-POINT INSTRUCTION, %
~
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0 2 4 6 8 10 2 4 6 100
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Fig. 3. Usage of floating point instructions in matrix inversion
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Fig. 4. Instruction usage of matrix inversion, n = 100
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TASK COST

0.1
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: SIGMA 5

: SIGMA 5
. PDP 11/20

: PDP 11/20

WITH FLOATING HARDWARE

WITH FLOATING HARDWARE

24 32

No. OF MEMORY UNITS

Fig. 5. Relative cost of executing matrix inversion
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Fig. 6. Relative cost of FORTRAN compilation
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Fig. 7. Performance parameters of hypothetical machine: (a) C = 1:
control memory of same speed as main; (b) T = 1: control memory

of same speed as main
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